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Breather solutions to the focusing nonlinear Schro¨dinger equation

Masayoshi Tajiri and Yosuke Watanabe
Department of Mathematical Sciences, College of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japa
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The N-breather solution to the focusing nonlinear Schro¨dinger equation is presented. It is shown that the
breather is linearly unstable, but the unstable modes are overstabilized and do not destroy the structure of the
breather. It is also demonstrated that the breather solution can be constructed as an imbricate series of rational
growing-and-decaying modes.@S1063-651X~98!01903-5#

PACS number~s!: 03.40.Kf, 03.40.Gc
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I. INTRODUCTION

The self-modulation of one-dimensional waves in a no
linear dispersive medium can be described by the nonlin
Schrödinger ~NLS! equation

iut1uxx1quuu2u50, ~1!

which has been derived in various branches of physics@1–5#.
It is well known that ifq,0, a plane wave is stable for th
modulation and ifq.0, the plane wave is not stable b
subject to the modulational instability. Equation~1! with q
.0 is called the focusing NLS~FNLS! equation and has a
N-envelope-soliton solution which satisfies the bound
conditionu→0 asuxu→` @6,7#. On the other hand, Eq.~1!
with q,0 is called the defocusing NLS~DNLS! equation
and has theN-dark-hole soliton solution which satisfies th
boundary conditionuuu2→const asuxu→` and which was
given by Hirota@8# as

u5r0 exp~ iu!
g

f
, ~2!

where

f 5 (
m> 50,1

expF(
i . j

~N!

Ai j m im j1(
j 51

N

m jh j G ,

g5 (
m> 50,1

expF(
i . j

~N!

Ai j m im j1(
j 51

N

m j~h j12if j !G , ~3!

and

exp~Ai j !5F sin 1
2 ~f i2f j !

sin 1
2 ~f i1f j !

G 2

,

h j5pjx2V j t1h j
0,

pj
2522qr0

2 sin2 f j ,

V j52kpj2pj
2 cot f j ,

u5kx2vt,

v5k22qr0
2,
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-
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wheref j are distinct real constants,(m> 50,1 is the summation
over all possible combinations ofm150,1, m250,1,...,mN

50,1, and( i . j
(N) indicates the summation over all possib

pairs chosen fromN elements, andh j
0 are arbitrary phases.

Substituting the expression~2! into the NLS equation~1!,
we have the coupled equations forf andg,

~ iD t12ikDx1Dx
2!g• f 50,

~Dx
21qr0

2! f • f 2qr0
2ugu250, ~4!

where we have used the boundary conditionuuu2→r0
2 as

uxu→` andu5kx2vt, v5k22qr0
2, the operatorsDt , Dx ,

and various products of them are defined by

Dt
na•b[S ]

]t
2

]

]t8D
n

a~ t !b~ t8!u t85t ,

Dx
na•b[S ]

]x
2

]

]x8D
n

a~x!b~x8!ux85x .

We see that the bilinear form~4! of the DNLS~FNLS! equa-
tion is converted into that of the FNLS~DNLS! equation
under the transformation

x→ ix, t→2t, k→2 ik, v→2v, q→2q. ~5!

This fact shows the possibility that the solution of the DNL
equation with expression~2! can be transformed into the so
lution of the FNLS equation by using the transformation~5!.
Ablowitz and Herbst @9# have already shown that th
2N-dark-hole soliton solution@8# of the DNLS equation be-
comes the solution of the FNLS equation under the trans
mation ~5! with k50 provided the evenness conditio
u(x,t)5u(2x,t), is satisfied.

It is well known that an exact periodic solution to th
soliton equations can often be expressed by the sum of
stituents which have a localized structure individually, su
as solitons@10–12#. Such a superposition was found by Tod
@13# for the case of the cnoidal wave of the Toda lattice a
the Korteweg–de Vries~KdV! equations. Zaitsev@14# and
Tajiri and Murakami@15# have succeeded in obtaining th
periodic soliton solution and the lattice soliton solution
the nonlinear superposition of the rational soliton solutio
for the Kadmtsev-Petviashvili~KP! equation with positive
dispersion, respectively. Recently, it was shown that the n
3510 © 1998 The American Physical Society
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57 3511BREATHER SOLUTIONS TO THE FOCUSING . . .
linear periodic wave solutions to the Boussinesq equa
can be constructed as the imbricate series of ratio
growing-and-decaying modes which are localized in sp
and time @16,17#. The uniform state with negative back
ground described by the Boussinesq equation is linearly
stable for all waves. The rational growing-and-decay
mode solution can be in existence on such a uniform st
Taking into account the fact that the uniform plane wa
described by the FNLS equation is not stable but subjec
the modulational instability@18–20#, we can expect that the
FNLS equation also has the rational growing-and-decay
mode solution, which solution has already been found
Akhmediev, Eleonskii, and Kulagin@21#. And we can also
expect that overstabilized wave solutions to the FNLS eq
tion are constructed as the imbricate series of the ratio
growing-and-decaying modes.

In this paper we discuss the solutions of the FNLS eq
tion. The purposes of this study are to show that~i! the FNLS
equation has theN-breather solution,~ii ! the recurrent wave
solutions can be constructed as the imbricate series of r
nal growing-and-decaying modes, and~iii ! the breather solu-
tion is linearly unstable but the linearly unstable modes
not destroy the structure of the breather.

II. BREATHER SOLUTIONS

We consider periodic envelope-wave solutions of
FNLS equation

iut1uxx1quuu2u50 ~q.0!, ~6!

with the boundary condition

uuu2→r0
2 as uxu→`. ~7!

Under the transformation~5!, the 2N-dark-hole soliton solu-
tion of the DNLS equationq,0 transforms the solution o
the FNLS equationq.0 with

pl5 iA2qr0 sin f l ,

pl 1M52 iA2qr0 sin f l ~ l 51,2, . . . ,M !,

v5k22qr0
2 ~8!

for N52M ~M is an integer!, which has been pointed out b
Ablowitz and Herbst@9#. It should be noted thatpj ( j
51,2, . . . ,N) are distinct pure imaginary andf j andV j ( j
51,2, . . . ,N) are real constants. In this paper we call it t
N-growing-and-decaying mode solution.

We now consider the extension of the solution to the c
that pj , V j , andf j are complex numbers. First of all, w
confirm that the two-soliton solution with complex wav
numbers and frequencies satisfies Eq.~6!. The two-soliton
solution may be written as

u5r0 exp~ iu!
g

f
, ~9!

where
n
al
e

n-
g
e.

to

g
y

a-
al

-

io-

o

e

e

f 511eh11eh21aeh11h2,

g511eh112if11eh212if21aeh11h212i ~f11f2!, ~10!

and

h j5Pjx2V j t1h j
0 ~ j 51,2!,

u5kx2vt,

where Pj , V j , h j
0, and f j are complex. Substituting Eq

~10! into Eq. ~4! with q.0, we find that if the following
relations are satisfied, Eq.~9! is the solution of Eq.~6!,

v5k22qr0
2,

f25f1* 6p,

P15 iA2qr0 sin f1 ,

P25 iA2qr0 sin f252 iA2qr0 sin f1* ,

V j52kPj2Pj
2 cot f j ~ j 51,2!,

a5F sin 1
2 ~f12f2!

sin 1
2 ~f11f2!

G 2

5F cos 1
2 ~f12f1* !

cos 1
2 ~f11f1* !

G 2

. ~11!

Then, we have the breather solution

u5r0 cos 2fRei ~u12fR!F11
1

Aa cosh~hR1s!1cosh I

3H S cosh 2f I

cos 2fR
21D cosh I1 i S tan 2fR sinh~hR1s!

2
sinh 2f I

cos 2fR
sin h I D J G , ~12!

wherehR5PRx2VRt1hR
0, h I5PIx2V I t1h I

0, ands is a
constant, andP15PR1 iPI , V15VR1 iV I , anda are de-
termined for givenf15fR1 if I by Eq. ~11! as follows:

~PR
22PI

2!1qr0
2~12cos 2fR cosh 2f I !50,

2PRPI1qr0
2 sin 2fR sinh 2f I50,

VR22kPR1
~PR

22PI
2!sin 2fR12PRPI sinh 2f I

cosh 2f I2cos 2fR
50,

V I22kPI2
~PR

22PI
2!sinh 2f I22PRPI sin 2fR

cosh 2f I2cos 2fR
50,

a5
cosh2 f I

cos2 fR
. ~13!

The condition of the nonsingular solution,a.1, is always
satisfied. Figure 1 shows the typical time development of
breather solution.

As special cases of this solution,~i! the solution with
fRÞ0 andf I50 corresponds to the first homoclinic orb
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3512 57MASAYOSHI TAJIRI AND YOSUKE WATANABE
obtained by Ablowitz and Herbst@9#, which is periodic in the
x direction and localized in time. We call this solution th
growing-and-decaying mode solution hereafter in this pap
~ii ! The solution withk50, fR50, andf IÞ0 corresponds

FIG. 1. Typical time development of a breather solution forq
52, wherex andu are dimensionless.
r.

to the stationary breather solution, which is periodic in tim
and localized in thex space.~iii ! Taking fR5eg and f I
5ed, we have

PR52A2qr0de1O~e3!,

PI5A2qr0ge1O~e3!,

VR5~2qr0
2g22kr0A2qd!e1O~e3!,

V I5~2qr0
2d12kr0A2qg!e1O~e3!,

Aa511 1
2 ~g21d2!e2, ~14!

and

f 5@~ h̃R
21h̃ I

2!1~g21d2!#e21O~e3!,

g5@~ h̃R
21h̃ I

2!23~g21d2!14i ~gh̃R1dh̃ I !#e
21O~e3!,

~15!

as e→0, wherehR2hR
05eh̃R1O(e2) and h I2h I

05eh̃ I1
O(e2). Substituting Eq.~15! into Eq.~9! and taking the limit
e→0, we have

u5r0 exp~ iu!S 12
418iqr0

2t

112qr0
2~x22kt!214q2r0

4t2D .

~16!

This is an exact solution which is localized in space and ti
as shown in Fig. 2 and we call this solution the ration
growing-and-decaying mode.

It is interesting to note that even if we take the wa
numberPj and frequencyV j complex (j 51,2), the disper-
sion relation~11! is the same form as the case wherePj are
pure imaginary andV j are real. The same statements are t
for four-soliton solutions. This suggests that theN-breather
solution to the FNLS equation~6! can be expressed as
FIG. 2. Rational growing-and-decaying mode solution of the FNLS equation withq52 for r051 andk50. Curved lines drawn at the
bottom of this figure are contour lines. In this figure,x, t, andu are all dimensionless.



th
fr
s

g
o
ti

g
al

d-

-

tio-

s
y

57 3513BREATHER SOLUTIONS TO THE FOCUSING . . .
u5r0 exp~ iu!
g

f
, ~17!

f 5 (
m> 50,1

expF (
i . j

~2N!

Ai j m im j1(
j 51

2N

m jh j G ,

g5 (
m> 50,1

expF (
i . j

~2N!

Ai j m im j1(
j 51

2N

m j~h j12if j !G ,

~18!

where

h j5Pjx2V j t1h j
0,

hn1N5hn* ,

Pn1N5Pn* ,

Vn1N5Vn* ,

fn1N5fn* 1p

for j 51, . . . ,2N, n51,2, . . . ,N;

v5k22qr0
2,

Pj5 iA2qr0 sin f j ,

V j52kPj2Pj
2 cot f j ~19!

for j 51,2, . . . ,2N; and

exp~Amn!5F sin 1
2 ~fm2fn!

sin1
2 ~fm1fn!

G 2

,

exp~Am,n1N!5F cos 1
2 ~fm2fn* !

cos 1
2 ~fm1fn* !

G 2

,

exp~Am1N,n1N!5F sin 1
2 ~fm* 2fn* !

sin 1
2 ~fm* 1fn* !

G 2

~20!

for m51,2, . . . ,N, n51,2, . . . ,N, where fn are distinct
complex constants. Here, it should be noted that in
DNLS equation we cannot take the wave numbers and
quencies,Pj and V j , complex since the solution become
singular.

III. BREATHER SOLUTION AS IMBRICATE SERIES OF
RATIONAL GROWING-AND-DECAYING MODES

The purpose of this section is to show that the growin
and-decaying mode, stationary breather, and breather s
tions can be constructed by the imbricate series of the ra
nal growing-and-decaying modes.
e
e-

-
lu-
o-

A. Growing-and-decaying mode

First of all, we try to construct the growing-and-decayin
mode solution. It is interesting to note that the ration
growing-and-decaying mode solution~16! is rewritten as the
following form:

u5r0 exp$ i @kx2~k22qr0
2!t#%

3S 11
1

iqr0
2t1 1

2 A112qr0
2~x22kt!2D

3S 11
1

iqr0
2t2 1

2 A112qr0
2~x22kt!2D . ~21!

Especially in the case where the rational growing-an
decaying mode does not propagate, i.e.,k50, it takes the
following form:

u5r0 exp~ iqr0
2t !S 11

1

iqr0
2t1 1

2 A112qr0
2x2D

3S 11
1

iqr0
2t2 1

2 A112qr0
2x2D . ~22!

On the basis of Eq.~22!, we assume the form of a growing
and-decaying mode solution withk50 as follows:

u5r0 exp@ i ~st1f!#S 11b(
n

1

iat1n~x!1nD
3S 11b(

n8

1

iat2n~x!1n8D , ~23!

where the summation(n means limN→` (n52N
N , n(x) is a

function of x to be determined, anda and s are real con-
stants. This expression shows the superposition of the ra
nal growing-and-decaying mode about thex direction be-
cause the parts connected withx are treated as real function
and the parts connected witht are treated as pure imaginar
functions. We note that Eq.~23! is rewritten as

u5r0 exp@ i ~st1f!#„11bp cot$p@n~x!1 iat#%…

3„12bp cot$p@n~x!2 iat#%…. ~24!

After substituting Eq.~24! into Eq. ~6!, we have

s5qr0
2~11p2b2!2, ~25!

S dn~x!

dx D 2

5
qr0

2b2

2
@12p2b2 cot2 2pn~x!#, ~26!

d2n~x!

dx2 5qr0
2p3b4 cot 2pn~x!F S 112p2b2

p2b2 2
a

qr0
2p2b3D

1cot2 2pn~x!G . ~27!

Comparing Eq.~27! with the derivation of Eq.~26! by x and
using the relation 11cot2 A5cosec2 A we find
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FIG. 3. Growing-and-decaying mode solution of the FNLS equation withq52 for r051, b50.137,C50, andk50. As we can see, it
is constructed as the imbricate series of rational growing-and-decaying modes in thex direction.
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a5qr0
2~11p2b2!b. ~28!

Integrating Eq.~26!, we obtain the form ofn(x),

n~x!5
1

2p
arccosF 1

A11p2b2
cos~A2p2abx1C!G .

~29!

These show that Eq.~23! is the solution to Eq.~6! if two
constants,s anda, and the functionn(x) are given by Eqs.
~25!, ~28!, and~29!, respectively. From Eqs.~23!, ~25!, ~28!,
and ~29!, we obtain an exact solution,

u5r0~11p2b2!exp$ i @qr0
2~11p2b2!2t1f#%

3F12
2pb

11p2b2

3
pb cosh 2pat1 i sinh 2pat

cosh 2pat2~1/A11p2b2!cos~A2p2abx1C!
G .

~30!

This solution is periodic in thex direction and it grows ex-
ponentially at initial stage from the time-oscillate bac
ground, takes the maximum amplitude at a time, and fin
decays exponentially to the time-oscillate background, wh
we call the growing-and-decaying mode solution. In the c
q52, Eq. ~30! is in agreement with the solution shown b
Ablowitz and Herbst. A typical growing-and-decaying mo
solution is shown in Fig. 3. Comparing Figs. 2 and 3
helpful for us to understand that the growing-and-decay
mode solution can be constructed as the imbricate serie
rational growing-and-decaying modes.

Since Eq.~6! is invariant under the Galilei transforma
tions,
y
h
e

g
of

x85x22kt,

t85t,

u~x8,t8!5exp@2 i ~kx1k2t !#u~x,t !, ~31!

we find that the growing-and-decaying mode solution w
kÞ0 is constructed by the following imbricate series:

u5r0 exp„i $kx1@2k21qr0
2~11p2b2!2#t%…

3S 11b(
n

1

iat1n~x22kt!1nD
3S 11b(

n8

1

iat2n~x22kt!1n8D . ~32!

The imbricate series of rational growing-and-decayi
modes, Eq.~23! or Eq. ~32!, is modified from the usual way
of applying imbricate series which is the superposition of
whole solitary wave. It is very interesting to note that t
growing-and-decaying mode is constructed by the produ
of two imbricate series.

B. Stationary breather

Next, in the same way as in the preceding section,
construct another periodic solution, the stationary breat
solution, from the superposition of the rational growing-an
decaying modes. On the basis of Eq.~22!, we assume the
form of a stationary breather solution as

u5r0 exp@ i ~zt1f!#S 11 ih(
n

1

kt1 im~x!1nD
3S 11 ih(

n8

1

kt2 im~x!1n8D , ~33!

where the summation means limN→` (n52N
N , m(x) is a

function of x to be determined, and,k and z are real con-
stants. This expression shows the superposition of the ra
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nal growing-and-decaying modes about thet direction be-
cause the parts connected witht are treated as real function
and the parts connected withx are treated as pure imagina
functions. Rewriting Eq.~33! as

u5r0 exp@ i ~zt1f!#„11hp coth$p@m~x!2 ikt#%…

3„12hp coth$p@m~x!1 ikt#%… ~34!

and substituting Eq.~34! into Eq. ~6!, we have

z5qr0
2~12p2h2!2, ~35!

S dm~x!

dx D 2

5
qr0

2h2

2
@12p2h2 coth2 2pm~x!#, ~36!

d2m~x!

dx2 5qr0
2p3h4 coth 2pm~x!F S 122p2h2

p2h2 1
k

qr0
2p2h3D

1coth2 2pm~x!G . ~37!

Comparing Eq.~37! with the derivation of Eq.~36! by x and
using the relation coth2 A215cosech2 A gives

k52qr0
2~12p2h2!h. ~38!

Integrating Eq.~36!, we obtain the form ofm(x),

m~x!5
1

2p
arccoshF 1

A12p2h2
cosh~A22p2khx1C!G .

~39!

From Eqs.~33!, ~35!, ~38!, and~39!, we obtain the following
exact solution:

u5r0~12p2h2!exp@ iqr0
2~12p2h2!2t1 if#F11

2ph

12p2h2

3
ph cos 2pkt2 i sin 2pkt

cos 2pkt2~1/A12p2h2!cosh~A22p2khx1C!
G .

~40!

This is the stationary breather solution. This solution is
calized in space and grows and decays recurrently in ti
oscillate background.

C. Breather solution

It is difficult to construct the breather solution in the sam
way as in the previous two sections. It is interesting to n
that the absolute square of the breather solution is given

uuu25r0
21

2

q

]2

]x2 ln f , ~41!

with

f 5112ehR cosh I1ae2hR, ~42!

where
-
e-

e
y

hR5PRx2VRt1hR
0,

h I5PIx2V I t1h I
0,

anda and relations amongPR ,PI ,VR ,V I are given by Eq.
~13!. And furthermore, taking into account thatu is un-
changed even iff is multiplied by exp(ax1b) with a andb
independent ofx, we find that the breather solution can b
expressed by

uuu25r0
21

2

q

]2

]x2 ln@Aa cosh~PRx2VRt1s!

2cos~PIx2V I t1u!#, ~43!

wheres5hR
01 1

2 ln a, u5h I
01p.

In Fig. 4, this solution is drawn for a particular choice
the constants. The time development of the breather app
to be complicated at one view as shown in Fig. 1. Howev
when we depict the breather solution in thex-t plane, it
seems to represent an inclined sequence of rational grow
and-decaying modes as shown in Fig. 4. This leads to
conjecture that the breather solution is also expressed by
imbricate series of rational growing- and-decaying mod
But, if we assume the same expression for the breather s
tion as the previous sections, the calculation becomes
dious. We note that the rational growing-and-decaying mo
solution ~21! can be rewritten as

uuu25r0
22

1

q

]2

]x2 lnF 1

@ 1
2 A112qr0

2~x22kt!21 iqr0
2t#2

3
1

@ 1
2 A112qr0

2~x22kt!22 iqr0
2t#2G . ~44!

Then, we assume the form of the imbricate series for
breather solution as follows:

uuu25r0
22

1

q

]2

]x2 lnH F (
n52`

`
1

@w~x,t !2 ic~x,t !2n#2G
3F (

n52`

`
1

@w~x,t !1 ic~x,t !2n#2G J , ~45!

where w(x,t) and c(x,t) are functions ofx and t to be
determined. It is important to note that Eq.~45! is rewritten
in the form

uuu25r0
22

1

q

]2

]x2 ln$@p2cosec2p~w2 ic!#

3@p2cosec2p~w1 ic!#%

5r0
21

2

q

]2

]x2 ln@cosh 2pc2cos 2pw#. ~46!

Comparing this equation with Eq.~43!, we find

cosh 2pc5Aa cosh~PRx2VRt1s!,

cos 2pw5cos~PIx2V I t1u!, ~47!
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FIG. 4. Breather solution of the FNLS equation withq52 for r051, PR50.5,PI51.5, andk50.1. We can see that the breather soluti
is constructed as an inclined sequence of rational growing-and-decaying modes to thex and t axes.
of

lu-
or

cosh 2pc5cosh~PRx2VRt1s!,

cos 2pw5
1

Aa
cos~PIx2V I t1u!. ~48!

Equations~47! and ~48! are readily solved to give

c5
1

2p
ln@Aa cosh~PRx2VRt1s!

1Aa cosh2~PRx2VRt1s!21#,

w5
1

2p
~PIx2V I t1u!, ~49!

and

c5
1

2p
~PRx2VRt1s!,

w5
1

2p
arccosS 1

Aa
cos~PIx2V I t1u!D , ~50!

respectively. The substitution of Eq.~49! or Eq.~50! into Eq.
~45! gives the breather solution as an imbricate series
rational growing-and-decaying modes.

Now, we consider the asymptotic formulas of these so
tions. Taking the limit ~a! fR→0 and f I→0 with
fR /f I→0(P→0,V→0), we have

c5
1

2p
A112qr0

2~x22kt!2f I ,

w5
1

2p
~2qr0

2t !f I , ~51!

~b! fR→0 andf I→0 with f I /fR→0, we have

c52
1

2p
~2qr0

2t !fR ,

w5
1

2p
A112qr0

2~x22kt!2fR . ~52!

Thus for very smallfR and f I ~very small P and V!, the
solution~45! to Eq. ~6! havingc andw defined by Eqs.~49!
and ~50! is approximated by
uuu25r0
22

1

q

]2

]x2 lnH F (
n52`

`
1

@ 1
2 A112qr0

2~x22kt!21 iqr0
2t2pn/f I #

2G
3F (

n52`

`
1

@ 1
2 A112qr0

2~x22kt!22 iqr0
2t2pn/f I #

2G J ~53!

and

uuu25r0
22

1

q

]2

]x2 lnH F (
n52`

`
1

@ 1
2 A112qr0

2~x22kt!21 iqr0
2t1 ipn/fR#2G

3F (
n52`

`
1

@ 1
2 A112qr0

2~x22kt!22 iqr0
2t1 ipn/fR#2G J , ~54!
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respectively; which are simple summations of ration
growing-and-decaying mode solutions. The constitu
hump of the breather with smallPR andPI resembles ratio-
nal growing-and-decaying mode sufficiently as shown in F
4. In this sense, it is proper to regard the breather as
nonlinear superposition of rational growing-and-decay
modes.

IV. STABILITY OF BREATHER

In this section, the stability of the breather is studied
making use of the breather and the growing-and-decay
mode solution. The plane wave of Eq.~6!,

u5r0 exp@ i ~kx2vt !#, ~55!

with the dispersion relation

v5k22qr0
2, ~56!

is linearly unstable to infinitesimal modulational perturb
tions of the form

u5r0 exp@ i ~kx2vt !#H 11 ê1~ t !expF ipS x2
]v

]k
t D G

1 ê2~ t !expF2 ipS x2
]v

]k
t D G J , ~57!

with ê6(t)5 ê6(0)exp(st), where the growth rates is given
by

s25p2~2qr0
22p2!. ~58!

This is well known as the Benjamin-Feir instability@22#. The
most peculiar feature of solutions to the NLS equation is
existence of the Fermi-Pasta-Ulam recurrence phenome
in the long time evolution of the unstable solution. La
et al. @18# have shown that the numerical solution of Eq.~6!
with periodic boundary conditions and with a Benjamin-F
unstable initial condition shows that a state of maximu
modulation is reached by the unstable wave system and
reaching maximum modulation, the solution demodula
and eventually returns to an unmodulated state. It is inter
ing to note that the nonlinear evolution of an unstable mo
is described by the growing-and-decaying mode solut
which is given by Eq.~12! with f I50. The mode grows
exponentially at initial stage (t52T8, T8@1) as follows:

u5r0 exp@ i ~kx2vt14fR!#$11eeVRt8 cos~px2V I t

1h I
0!%, ~59!

wheret85t1T8 ande5(2/a)(e22ifR21)exp(2VRT82hR
0)

!1, takes the maximum modulation at a time, and fina
(t5T9@1) returns exponentially to the initial state as fo
lows:

u5r0 exp@ i ~kx2vt !#$11e8e2VRt9 cos~px2V I t1h I
0!%,
~60!

wheret95t2T9 ande852(e2ifR21)exp(2VRT91hR
0) and

the growth rateVR and frequencyV I are given by
l
t

.
e

g

y
g

-

e
on

r

ter
s
t-
e
n

VR5p2 cot fR5pA2qr0
22p2,

V I52kp5
]v

]k
p, ~61!

which are in agreement with the growth rate~58! and the
frequency of modulational perturbation given by Eq.~57!,
respectively.

Now, we consider a solution consisting of a breath
and growing-and-decaying mode. This is obtained fro
Eqs. ~17!–~20!, where N52 is set and the breather wav
number, frequency, and phase,P15PR1 iPI , V15VR1
iV I , andf15fR1if I , are taken as the same as Eq.~13!
and the growing-and-decaying mode wave number and
quency, P25 ip5 iA2qr0 sinf2 and V25V2R1 iV2I

5pA2qr0
22p21 i2kp. The world lines of the breather an

growing-and-decaying mode in thex-t plane are schemati
cally drawn in Fig. 5. The lineG shows the maximum am
plitude of the growing-and-decaying mode. The growin
and-decaying mode has a finite value only in the sha
region near the lineG. The breather and growing-and
decaying mode solution before growth of the growing-an
decaying mode is expressed approximately by the follow
equations:~i! in the regionD in Fig. 5,

u5r0ei ~kx2vt14f2!Fg0

f 0
1 êeV2Rt8

g1f 02 f 1g0

f 0
2 G , ~62!

with

g05112ehR1s12ifR@cosh 2f I cos~h I1u11u2!

2 i sinh 2f I sin~h I1u11u2!#1M1e2hR12s14ifR,

~63!

FIG. 5. The schematic diagram of the world lines of breath
and growing-and-decaying mode. Breather takes the maximum
plitudes on lineB. Growing-and-decaying mode takes the ma
mum amplitude on lineG. In the neighborhood of lineG, the
growing-and-decaying mode is grown, but at regions far from l
G, i.e., at t52T8 and t5T9 (T8,T9@1), the amplitudes of the
growing-and-decaying mode are too small, as att52T8 the
growing-and-decaying mode does not grow yet, and att5T9 it
damps to die out already, respectively.
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g15e22if2
†cosp~x22kt!

1ehR12ifR
„L1$cosh 2f I cos@h I1p~x22kt!1u1#

2 i sinh 2f I sin@h I1p~x22kt!1u1#%

1L2$cosh 2f I cos@h I2p~x22kt!1u2#

2 i sinh 2f I sin@h I2p~x22kt!1u2#%…

1M1L1L2e2hR14ifR cos@p~x22kt!1u12u2#‡,

~64!

f 05112ehR1s cos~h I1u11u2!1M2e2hR12s, ~65!

f 15cosp~x22kt!1ehR$L1 cos@h I1p~x22kt!1u1#

1L2 cos@h I2p~x22kt!1u2#%

1M1L1L2e2hR cos@p~x22kt!1u12u2#, ~66!

where

s5 ln~L1L2!,

Fcoshf I

cosfR
G2

5M1 , F 1

cosf2
G2

5M2 ,

F sin1
2 ~f12f2!

sin1
2 ~f11f2!

G 2

5L1eiu1, F cos1
2 ~f12f2!

cos1
2 ~f11f2!

G 2

5L2eiu2,

ê5
2

M2
e2V2RT82h2

0
,

hR5PRx2VRt1hR
0, h I5PIx2V I t1h I

0,

and t85t1T8; and ~ii ! in the regionsD1 andD2 , the solu-
tions are given by

u5r0ei ~kx2vt14f2!$112L1L2ehR

3@~e2ifR cosh 2f I21!cos~h I1u11u2!

2 ie2ifR sinh 2f I sin~h I1u11u2!#

1 ê~e22if221!eV2Rt8 cos@p~x22kt!#% ~67!

and

u5r0ei ~kx2vt !H 11
2

M1L1L2
e2hR

3@~e22ifR cosh 2f I21!cos~h I1u11u2!

2 ie22ifR sinh 2f I sin~h I1u11u2!#

1
ê

L1L2
~e22if221!eV2Rt8 cos@p~x22kt!1u12u2#J ,

~68!

respectively. Here, we note thatehR is small ande2hR is
very small in Eqs.~67! and ~68!, respectively. Equations
~62!, ~67!, and~68! show that the perturbation of wave num
ber p on the breather grows exponentially at initial sta
with the same growth rateV2R as Eq.~58! for the Benjamin-
Feir instability. This means that the breather solution is l
early unstable to modulational perturbation. The perturbat
reaches a state of maximum modulation on the lineG in the
x-t plane. After reaching maximum modulation, the pertu
bation begins to damp and then damps to die out at su
ciently large time as the following forms:~i! in the regionE
in Fig. 5,

u5cei ~kx2vt !F ḡ0

f̄ 0

1 ēe2V2Rt9
ḡ1 f̄ 02 f̄ 1ḡ0

f̄ 0
G , ~69!

with

ḡ05112ehR12ifR@cosh 2f I cosh I2 i sinh 2f I sin h I #

1M1e2hR14ifR, ~70!

ḡ15e2if2
†cosp~x22kt!

1ehR12ifR
„L1$cosh 2f I cos@h I1p~x22kt!1u1#

2 i sinh 2f I sin@h I1p~x22kt!1u1#%

1L2$cosh 2f I cos@h I2p~x22kt!1u2#

2 i sinh 2f I sin@h I2p~x22kt!1u2#%…

1M1L1L2e2hR14ifR cos@p~x22kt!1u12u2#‡,

~71!

f̄ 05112ehR cosh I1M1e2hR, ~72!

f̄ 15cosp~x22kt!1ehR$L1 cos@h I1p~x22kt!1u1#

1L2 cos@h I2p~x22kt!1u2#%

1M1L1L2e2hR cos@p~x22kt!1u12u2#, ~73!

where ē52e2V2RT91h2
0
, t95t2T9; and ~ii ! in regionsE1

andE2 , the solutions are given by

u5r0ei ~kx2vt !$112ehR@~e2ifR cosh 2f I21!cosh I

2 ie2ifR sinh 2f I sin h I #

1 ē~e2if221!e2V2Rt9 cos@p~x22kt!#% ~74!

and

u5r0ei ~kx2vt !14ifRH 11
2

M1
e2hR@~e22ifR cosh 2f I21!

3cosh I2 ie22ifR sinh 2f I sin h I #

1 ēL1L2~e2if221!e2V2Rt9 cos@p~x22kt!1u12u2#J .

~75!

We can obtain the one-breather andN-growing-and-
decaying modes solution by using the bilinear form. T
solution shows that the growing-and-decaying modes da
to die out at sufficiently large time and only the breath
remains finally. The nonlinear development of these unsta
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modes on the breather are described by the solutions
superpose the one-breather and theN-growing-and-decaying
modes. The linear unstable modes do not destroy the s
ture of the breather, in other words, the identity of t
breather is not lost. The effect of the unstable modes on
breather is the phase shifts of the plane wave and
breather after enough time passed.

V. CONCLUSIONS

We have shown that the FNLS equation has
N-breather solutions with the boundary conditionuuu25r0

2 as
uxu→`. As special cases of the breather solution, we h
the growing-and-decaying mode, stationary breather, and
tional growing-and-decaying mode solutions. The growin
and-decaying mode solution is obtained by taking the li
f→0, which is localized in space and time. Here, we have
at

c-

e
e

e

e
a-
-
it
o

note that the breather solution to the DNLS equation
comes singular. It is also shown that the growing-an
decaying mode, stationary breather, and breather solut
can be constructed as the imbricate series of ratio
growing-and-decaying modes. In this sense, we can reg
the rational growing-and-decaying mode as the constituen
recurrent wave solutions on the unstable wave field. Th
periodic solutions are constructed by the products of t
imbricate series, rather than a single imbricate series a
other applications. The stability character of the breathe
investigated by using the exact solution. The breather is
early unstable. The nonlinear development of unsta
modes on the breather is described by the solution consis
of the one-breather and growing-and-decaying modes by
ing the bilinear form. It is shown that the linearly unstab
modes are overstabilized and do not destroy the structur
the breather.
n,
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